Окружность девяти точек.

 

У каждого треугольника имеется, и притом единственная, окружность девяти точек. Это – окружность, проходящая через следующие три тройки точек, положение которых определено для треугольника (рис.1): основания его высот D1, D2 и D3,  основания его медиан D4, D5 и D6, середины  D7, D8 и D9 отрезков прямых от точки пересечения его высот H до его вершин.

Эта окружность, найденная в XVIII веке великим ученым Л.Эйлером, была заново открыта в следующем столетии учителем в провинциальной Германии. Звали этого учителя Фейербах. Дополнительно Фейербах выяснил, что окружность девяти точек имеет еще четыре точки, тесно связанные с геометрией любого данного треугольника. Это точки ее касания с четырьмя окружностями специального вида (рис.2). Одна из этих окружностей вписанная, остальные три – вневписанные. Они вписаны в углы треугольника и касаются внешним образом его сторон. Точки касания этих окружностей с окружностью девяти точек D10, D11, D12 и  D13 называются точками Фейербаха. Таким образом, окружность девяти точек является в действительности окружностью тринадцати точек.

Окружность эту легко построить, если знать два свойства. Во-первых, центр окружности девяти точек лежит в середине отрезка, соединяющего центр описанной около треугольника окружности с точкой H – его ортоцентром (точка пересечения его высот). Во-вторых, ее радиус для данного треугольника равен половине радиуса описанной около него окружности.                                           

 

рис.1

рис.2